Friday, November 26, 2010

Oxygen;An Inevitable Factor

Oxygen  is the element with atomic number 8 and represented by the symbol O. Its name derives from the Greek roots  (oxys) (acid, literally "sharp", referring to the sour taste of acids) and - (-genēs) (producer, literally begetter), because at the time of naming, it was mistakenly thought that all acids required oxygen in their composition.
Oxygen is a member of the chalcogen group on the periodic table, and is a highly reactive nonmetallic period 2 element that readily forms compounds (notably oxides) with almost all other elements. At standard temperature and pressure, two atoms of the element bind to form dioxygen, a colorless, odorless, tasteless diatomic gas with the formula O2. By mass, oxygen is the third most abundant element in the universe after hydrogen and helium and the most abundant element by mass in the Earth's crust.Diatomic oxygen gas constitutes 20.8% of the volume of air.
All major classes of structural molecules in living organisms, such as proteins, carbohydrates, and fats, contain oxygen, as do the major inorganic compounds that comprise animal shells, teeth, and bone. Oxygen in the form of O2 is produced from water by cyanobacteria, algae and plants during photosynthesis and is used in cellular respiration for all complex life. Oxygen is toxic to obligately anaerobic organisms. Anaerobes were the dominant form of early life on Earth until O2 began to accumulate in the atmosphere roughly 2.5 billion years ago.Another form (allotrope) of oxygen, ozone (O3), helps protect the biosphere from ultraviolet radiation with the high-altitude ozone layer, but is a pollutant near the surface where it is a by-product of smog. At even higher low earth orbit altitudes atomic oxygen is a significant presence and a cause of erosion for spacecraft.
Oxygen was independently discovered by Carl Wilhelm Scheele, in Uppsala, in 1773 or earlier, and Joseph Priestley in Wiltshire, in 1774, but Priestley is often given priority because his publication came out in print first. The name oxygen was coined in 1777 by Antoine Lavoisier, whose experiments with oxygen helped to discredit the then-popular phlogiston theory of combustion and corrosion. Oxygen is produced industrially by fractional distillation of liquefied air, use of zeolites to remove carbon dioxide and nitrogen from air, electrolysis of water and other means. Uses of oxygen include the production of steel, plastics and textiles; rocket propellant; oxygen therapy; and life support in aircraft, submarines, spaceflight and diving.

Photosynthesis and respiration

A diagram of photosynthesis processes, including income of water and carbon dioxide, illumination and release of oxygen. Reactions produce ATP and NADPH in a Calvin cycle with a sugar as a by product.
Photosynthesis splits water to liberate O2 and fixes CO2 into sugar.
In nature, free oxygen is produced by the light-driven splitting of water during oxygenic photosynthesis. Green algae and cyanobacteria in marine environments provide about 70% of the free oxygen produced on earth and the rest is produced by terrestrial plants.
A simplified overall formula for photosynthesis is:
6 CO2 + 6 H2O + photonsC6H12O6 + 6 O2 (or simply carbon dioxide + water + sunlight → glucose + dioxygen)
Photolytic oxygen evolution occurs in the thylakoid membranes of photosynthetic organisms and requires the energy of four photons. Many steps are involved, but the result is the formation of a proton gradient across the thylakoid membrane, which is used to synthesize ATP via photophosphorylation. The O2 remaining after oxidation of the water molecule is released into the atmosphere.
Molecular dioxygen, O2, is essential for cellular respiration in all aerobic organisms. Oxygen is used in mitochondria to help generate adenosine triphosphate (ATP) during oxidative phosphorylation. The reaction for aerobic respiration is essentially the reverse of photosynthesis and is simplified as:
C6H12O6 + 6 O2 → 6 CO2 + 6 H2O + 2880 kJ·mol-1
In vertebrates, O2 is diffused through membranes in the lungs and into red blood cells. Hemoglobin binds O2, changing its color from bluish red to bright red. Other animals use hemocyanin (molluscs and some arthropods) or hemerythrin (spiders and lobsters). A liter of blood can dissolve 200 cm3 of O2.
Reactive oxygen species, such as superoxide ion (O2) and hydrogen peroxide (H2O2), are dangerous by-products of oxygen use in organisms. Parts of the immune system of higher organisms, however, create peroxide, superoxide, and singlet oxygen to destroy invading microbes. Reactive oxygen species also play an important role in the hypersensitive response of plants against pathogen attack.
An adult human in rest inhales 1.8 to 2.4 grams of oxygen per minute.This amounts to more than 6 billion tonnes of oxygen inhaled by humanity per year.

Industrial production

Two major methods are employed to produce 100 million tonnes of O2 extracted from air for industrial uses annually. The most common method is to fractionally distill liquefied air into its various components, with nitrogen N2 distilling as a vapor while oxygen O2 is left as a liquid.
A drawing of three vertical pipes connected at the bottom and filled with oxygen (left pipe), water (middle) and hydrogen (right). Anode and cathode electrodes are inserted into the left and right pipes and externally connected to a battery.
Hoffman electrolysis apparatus used in electrolysis of water.
The other major method of producing O2 gas involves passing a stream of clean, dry air through one bed of a pair of identical zeolite molecular sieves, which absorbs the nitrogen and delivers a gas stream that is 90% to 93% O2. Simultaneously, nitrogen gas is released from the other nitrogen-saturated zeolite bed, by reducing the chamber operating pressure and diverting part of the oxygen gas from the producer bed through it, in the reverse direction of flow. After a set cycle time the operation of the two beds is interchanged, thereby allowing for a continuous supply of gaseous oxygen to be pumped through a pipeline. This is known as pressure swing adsorption. Oxygen gas is increasingly obtained by these non-cryogenic technologies (see also the related vacuum swing adsorption).
Oxygen gas can also be produced through electrolysis of water into molecular oxygen and hydrogen. DC electricity must be used: if AC is used, the gases in each limb consist of hydrogen and oxygen in the explosive ratio 2:1. Contrary to popular belief, the 2:1 ratio observed in the DC electrolysis of acidified water does not prove that the empirical formula of water is H2O unless certain assumptions are made about the molecular formulae of hydrogen and oxygen themselves.
A similar method is the electrocatalytic O2 evolution from oxides and oxoacids. Chemical catalysts can be used as well, such as in chemical oxygen generators or oxygen candles that are used as part of the life-support equipment on submarines, and are still part of standard equipment on commercial airliners in case of depressurization emergencies. Another air separation technology involves forcing air to dissolve through ceramic membranes based on zirconium dioxide by either high pressure or an electric current, to produce nearly pure O2 gas.
In large quantities, the price of liquid oxygen in 2001 was approximately $0.21/kg. Since the primary cost of production is the energy cost of liquefying the air, the production cost will change as energy cost varies.
For reasons of economy, oxygen is often transported in bulk as a liquid in specially insulated tankers, since one litre of liquefied oxygen is equivalent to 840 liters of gaseous oxygen at atmospheric pressure and 20 °C. Such tankers are used to refill bulk liquid oxygen storage containers, which stand outside hospitals and other institutions with a need for large volumes of pure oxygen gas. Liquid oxygen is passed through heat exchangers, which convert the cryogenic liquid into gas before it enters the building. Oxygen is also stored and shipped in smaller cylinders containing the compressed gas; a form that is useful in certain portable medical applications and oxy-fuel welding and cutting.

Medical

A gray device with a label DeVILBISS LT4000 and some text on the front panel. A green plastic pipe is running from the device.
An oxygen concentrator in an emphysema patient's house
Uptake of O2 from the air is the essential purpose of respiration, so oxygen supplementation is used in medicine. Treatment not only increases oxygen levels in the patient's blood, but has the secondary effect of decreasing resistance to blood flow in many types of diseased lungs, easing work load on the heart. Oxygen therapy is used to treat emphysema, pneumonia, some heart disorders (congestive heart failure), some disorders that cause increased pulmonary artery pressure, and any disease that impairs the body's ability to take up and use gaseous oxygen.
Treatments are flexible enough to be used in hospitals, the patient's home, or increasingly by portable devices. Oxygen tents were once commonly used in oxygen supplementation, but have since been replaced mostly by the use of oxygen masks or nasal cannulas.
Hyperbaric (high-pressure) medicine uses special oxygen chambers to increase the partial pressure of O2 around the patient and, when needed, the medical staff.Carbon monoxide poisoning, gas gangrene, and decompression sickness (the 'bends') are sometimes treated using these devices.Increased O2 concentration in the lungs helps to displace carbon monoxide from the heme group of hemoglobin.Oxygen gas is poisonous to the anaerobic bacteria that cause gas gangrene, so increasing its partial pressure helps kill them.Decompression sickness occurs in divers who decompress too quickly after a dive, resulting in bubbles of inert gas, mostly nitrogen and helium, forming in their blood. Increasing the pressure of O2 as soon as possible is part of the treatment.
Oxygen is also used medically for patients who require mechanical ventilation, often at concentrations above the 21% found in ambient air.

Thursday, November 25, 2010

Nitrogen Fixation

Nitrogen fixation is the natural process, either biological or abiotic, by which nitrogen (N2) in the atmosphere is converted into ammonia.[1] This process is essential for life because fixed nitrogen is required to biosynthesize the basic building blocks of life, e.g. nucleotides for DNA and RNA and amino acids for proteins. Formally, nitrogen fixation also refers to other abiological conversions of nitrogen, such as its conversion to nitrogen dioxide.
Nitrogen fixation is utilized by numerous prokaryotes, including bacteria, actinobacteria, and certain types of anaerobic bacteria. Microorganisms that fix nitrogen are called diazotrophs. Some higher plants, and some animals (termites), have formed associations (symbioses) with diazotrophs. Nitrogen fixation also occurs as a result of non-biological processes. These include lightning, industrially through the Haber-Bosch Process, and combustion.Biological nitrogen fixation was discovered by the Dutch microbiologist Martinus Beijerinck.

Biological nitrogen fixation

Schematic representation of the nitrogen cycle. Abiotic nitrogen fixation has been omitted.
Biological nitrogen fixation (BNF) occurs when atmospheric nitrogen is converted to ammonia by an enzyme called nitrogenase. The formula for BNF is:
N2 + 6 H+ + 6 e → 2 NH3
The process is coupled to the hydrolysis of 16 equivalents of ATP and is accompanied by the co-formation of one molecule of H2. In free-living diazotrophs, the nitrogenase-generated ammonium is assimilated into glutamate through the glutamine synthetase/glutamate synthase pathway.
Enzymes responsible for nitrogenase action are very susceptible to destruction by oxygen. (In fact, many bacteria cease production of the enzyme in the presence of oxygen). Many nitrogen-fixing organisms exist only in anaerobic conditions, respiring to draw down oxygen levels, or binding the oxygen with a protein such as Leghemoglobin.
Plants that contribute to nitrogen fixation include the legume family – Fabaceae – with taxa such as clover, soybeans, alfalfa, lupines, peanuts, and rooibos. They contain symbiotic bacteria called Rhizobia within nodules in their root systems, producing nitrogen compounds that help the plant to grow and compete with other plants. When the plant dies, the fixed nitrogen is released, making it available to other plants and this helps to fertilize the soil[1][3] The great majority of legumes have this association, but a few genera (e.g., Styphnolobium) do not. In many traditional and organic farming practices, fields are rotated through various types of crops, which usually includes one consisting mainly or entirely of clover or buckwheat (family Polygonaceae), which were often referred to as "green manure."

Non-leguminous nitrogen-fixing plants



A sectioned alder tree root nodule.



A whole alder tree root nodule.
Although by far the majority of nitrogen-fixing plants are in the legume family Fabaceae, there are a few non-leguminous plants, such as alder, that can also fix nitrogen. These plants, referred to as "actinorhizal plants", consist of 24genera of woody shrubs or trees distributed among in 8 plant families. The ability to fix nitrogen is not universally present in these families. For instance, of 122 genera in the Rosaceae, only 4 genera are capable of fixing nitrogen. All these families belong to the orders Cucurbitales, Fagales and Rosales, which together with the Fabales form a clade of eurosids. In this clade, Fabales were the first lineage to branch off; thus, the ability to fix nitrogen may be plesiomorphic and subsequently lost in most descendants of the original nitrogen-fixing plant; alternatively, it may be that the basic genetic and physiological requirements were present in an incipient state in the last common ancestors of all these plants, but only evolved to full function in some of them:

Chemical nitrogen fixation

Nitrogen can also be artificially fixed for use in fertilizers, explosives, or in other products. The most common method is the Haber process. Artificial fertilizer production is now the largest source of human-produced fixed nitrogen in the Earth's ecosystem.
The Haber process requires high pressures (around 200 atm) and high temperatures (at least 400 °C), routine conditions for industrial catalysis. This highly efficient process uses natural gas as a hydrogen source and air as a nitrogen source.

നവംബര്‍ - 21 സി.വി.രാമന്‍ ചരമദിനം


ഭാരതത്തിന്‍റെ അഭിമാനം


ശാസ്ത്രഞ്ജന്‍മാരുടെ മാതൃക


അങ്ങേക്ക് ആദരാജ്ഞലികള്‍


1921-ൽ അദ്ദേഹം ഇംഗ്ലണ്ടിലേയ്ക്ക് ആദ്യമായി യാത്ര നടത്തി. ഓക്സ്ഫോർഡിൽ നടന്ന സയൻസ് കോൺഗ്രസ്സിൽ കൽക്കട്ടാ സർ‌വകലാശാലയെ പ്രതിനിധീകരിച്ചായിരുന്നു രാമൻ എത്തിയത്. അവിടെ വെച്ച് അദ്ദേഹം പ്രശസ്ത ഭൗതികശാസ്ത്രജ്ഞന്മാരായ ജെ.ജെ. തോംസൺ, ബ്രാഗ്ഗ്,റുഥർഫോർഡ് എന്നിവരെ പരിചയപ്പെട്ടു.
ഇംഗ്ലണ്ടിൽനിന്ന് തിരിച്ചുള്ള യാത്ര ചരിത്രപ്രസിദ്ധമായ കണ്ടുപിടുത്തത്തിന് വഴിതെളിച്ചു. മധ്യധരണ്യാഴിയിലൂടെയുള്ള ആ കപ്പൽ യാത്രയിൽ ,സമുദ്രത്തിന്റെ നീലനിറത്തെക്കുറിച്ച് അന്വേഷിക്കുന്നതിൽ അദ്ദേഹത്തിന് താല്പര്യം ജനിച്ചു. അങ്ങനെ പ്രകാശത്തിന്റെ വിസരണം (Scattering of Light ) എന്നപ്രതിഭാസത്തെക്കുറിച്ച് പഠിയ്ക്കാനും അതുവഴി രാമൻ പ്രഭാവം (Raman Effect) എന്ന കണ്ടുപിടുത്തത്തിന് തുടക്കം കുറിയ്ക്കാനും സാധിച്ചു.
1924-ൽ, ഇംഗ്ലണ്ടിലെ റോയൽ സൊസൈറ്റിയിലെ അംഗമായി (Fellow of Royal Society) രാമൻ തെരഞ്ഞെടുക്കപ്പെട്ടു. അന്നദ്ദേഹത്തിന് വെറും 36 വയസ്സ് പ്രായം മാത്രമേ ഉണ്ടായിരുന്നുള്ളൂ. 1924-ൽ ബ്രിട്ടീഷ് അസോസിയേഷൻ ഫോർ അഡ്വാൻസ്മെന്റ് ഓഫ് സയൻസ് (British Association For Advancement of Science)-ന്റെ ക്ഷണപ്രകാരം രാമൻ കാനഡയിലേക്കു പോയി. അവിടെ വെച്ച് പ്രസിദ്ധശാസ്ത്രജ്ഞനായ ടൊറെന്റോയുമായി (Torento) പ്രകാശത്തിന്റെ വിസരണം എന്ന പ്രതിഭാസത്തെക്കുറിച്ച് ചർച്ചചെയ്തു. കാനഡയിൽ നിന്നും ഫ്രാങ്ക്ലിൻ ഇൻസ്റ്റിറ്റ്യൂട്ടിന്റെ (Franklin Institute) ശതാബ്ദി ആഘോഷങ്ങളിൽ ഇന്ത്യയെ പ്രതിനിധീകരിച്ച് പങ്കെടുക്കുന്നതിനായി അമേരിക്കയിലെത്തി. ഇതിനെത്തുടർന്ന്, കാലിഫോർണിയ ഇൻസ്റ്റിറ്റ്യൂട്ട് ഓഫ് ടെക്നോളജിയിലെ (California Institute of Technology) നോർമൻ ബ്രിഡ്ജ് പരീക്ഷണശാലയിൽ (Norman Bridge Laboratary) വിസിറ്റിംഗ് പ്രോഫസറായി നാലുമാസം ജോലിനോക്കി. അമേരിക്കയിൽ ‍വെച്ച് പല ശാസ്ത്രജ്ഞരേയും, പല പരീക്ഷണശാലകളും സന്ദർശിയ്ക്കാൻ രാമന്‌ അവസരം ലഭിച്ചു. 1925 ൽ അദ്ദേഹം ഇന്ത്യയിൽ തിരിച്ചെത്തി, ആ വർഷം ആഗസ്റ്റിൽ അദ്ദേഹംറഷ്യയിലെ സയൻസ് അക്കാദമിയുടെ ശതാബ്ദി ആഘോഷങ്ങളിൽ പങ്കെടുക്കാൻ പോയി . 1924-ൽ റോയൽ സൊസൈറ്റിയിൽ അംഗത്വം 1929-ൽ ബ്രിട്ടനിൽ നിന്നും സർ ബഹുമതി, ഈ ബഹുമതികളെല്ലാം 1930 ലെ നോബൽ സമ്മാന പുരസ്കാരലബ്ധിക്കും മുൻപെയായിരുന്നു എന്ന അപൂർവ ബഹുമതിയും സി.വി രാമന് സ്വന്തം.

രാസഗുണങ്ങളുടെ സവിശേഷത.

സ്വര്‍ണ്ണം, വെള്ളി ഇവ സാധാരണയായി രാസപ്രവര്‍ത്തനങ്ങളില്‍ ഏര്‍പ്പെടാറില്ല. എന്നാല്‍ അവയുടെ നാനോകണങ്ങള്‍ രാസപ്രവര്‍ത്തനത്തിന് വിധേയമാകുന്നു.ഉദാഹരണത്തിന് വെള്ളിപ്പാത്രത്തില്‍ CCl4 സൂക്ഷിച്ചാല്‍ ഏറെക്കാലം ഒരു മാറ്റവുമില്ലാതെ ഇരിക്കും. എന്നാല്‍ വെള്ളിയുടെ നാനോ കണവുമായി CCl4 സമ്പര്‍ക്കത്തിലിരുന്നാല്‍ മണിക്കൂറുകള്‍ക്കകം വെള്ളി പ്രവര്‍ത്തിച്ച് ഇല്ലാതാകുന്നു.

Ag + CCl4 ---> No reaction
Ag(Nano) + CCl4 ---> 4 AgCl + C
ഉപയോഗങ്ങള്‍.

  1. വെള്ളിയുടെ നാനോകണങ്ങള്‍ കീടനാശിനികളുടെ (ഹാലോ കാര്‍ബണുകള്‍) നിര്‍മ്മാര്‍ജ്ജനത്തിന് ഉപയോഗിക്കുന്നു.
  2. MoS2 പെട്രോളിയത്തില്‍ നിന്ന് S-നെ നീക്കം ചെയ്യുന്നതിന് ഉപയോഗിക്കുന്നു.
  3. സ്വര്‍ണ്ണം രോഗനിര്‍ണയത്തിനായി ഉപയോഗിക്കുന്നു.
  4. ഫുള്ളെറീന്‍ ജീന്‍ ചികിത്സക്ക് ഉപയോഗിക്കുന്നു.

നാനോ ടെക് നോളജി അനുദിനം വികാസം പ്രാപിച്ചു വരികയാണ്. ഈ കണങ്ങളുടെ അനന്തമായ സാധ്യതകള്‍ ഏതെല്ലാം മേഖലകളെ മാറ്റി മറിക്കും എന്നു കാത്തിരുന്ന് കാണാം.

Wednesday, November 24, 2010

പിരിയോഡിക്ക് ടേബിള്‍ ചരിതം തുള്ളല്‍

ഇലക്ട്രോണ്‍ വിന്യാസം എഴുതണമെങ്കില്‍
ആഫ്ബാ തത്വമറിഞ്ഞീടേണം.
ഓരോ സബ് ഷെല്ലിലുമുള്‍ക്കൊള്ളും
ഇലക്ട്രോണ്‍ എണ്ണമറിഞ്ഞീടേണം.
s-ല്‍ 2, p-യില്‍ 6,d-യില്‍ 10, f-ല്‍ 14.
പീരിയഡ് അറിയാന്‍ കൂടിയ ഷെല്‍ നമ്പര്‍
മാത്രം നോക്കി എഴുതിയാല്‍ മതിയേ...
ബ്ലോക്കറിയാനോ എന്തൊരെളുപ്പം,
അവസാന സബ് ഷെല്‍ മാത്രം മതിയേ.
s-ബ്ലോക്കാണെങ്കില്‍ ഗ്രൂപ്പറിയാനായ്
അവസാന s–ലെ എണ്ണം നോക്കൂ.
p-ബ്ലോക്കാണെങ്കില്‍ ഗ്രൂപ്പറിയാനായ്
അവസാന p–ലെ ഇലക്ട്രോണിനോട് ...
ഒട്ടും മടിക്കാതെ കൂട്ടുക നമ്മള്‍
ഒരു ഡസന്‍ അഥവാ 12 എണ്ണം.
d-ബ്ലോക്കാണെങ്കില്‍ ഗ്രൂപ്പറിയാനായ്
അവസാന d–ലെ ഇലക്ട്രോണിനോട്
ശങ്ക കൂടാതെ കൂട്ടുക നമ്മള്‍ ആദ്യ ഇരട്ട സംഖ്യ 2
അയോണികരണ ഊര്‍ജ്ജം പിരിയഡില്‍ കൂടും
ഗ്രൂപ്പില്‍ കുറഞ്ഞ് കുറഞ്ഞ് വരുന്നേ
പീരിയോഡിക് ടേബിള്‍ മൂലകസ്ഥ)നം
കണ്ടു പിടിക്കാനെന്തൊരെളുപ്പം.

Monday, October 18, 2010

രസതന്ത്ര നോബല്‍സമ്മാനം -2010








2010-ലെ രസതന്ത്രത്തിനുള്ള നൊബേ മ്മാനം പ്രഖ്യാപിച്ചു  . മൂന്ന് ശാസ്ത്രജ്ഞന്‍മാര്‍ അവാര്‍ഡ്‌ പങ്കിട്ടു . റിച്ചാര്‍ഡ്‌ F ഹെക്ക്  (അമേരിക്ക ) , നെഗിഷി (ജപ്പാ ) , അകിര സുസുകി (ജപ്പാ ) എന്നിങ്ങനെയാണ് അവരുടെ പേരുക . കാര്‍ബണിക രസതന്ത്രത്തി  അതിസങ്കീര്‍ണവും ഇതുവരെ ജീവകോശങ്ങള്‍ക്ക് മാത്രം നിര്‍മ്മിക്കാ സാധ്യമായിരുന്ന കാര്‍ബണ്‍ സംയുക്തങ്ങളെ ,  ഉല്‍പ്രേരകമായി പലേഡിയം ഉപയോഗിച്ച് പരീക്ഷണ ശാലയില്‍ നിര്‍മിക്കുന്നതിനുള്ള സാങ്കേതിക വിദ്യ കണ്ടുപിടിച്ചതിനാണ് സമ്മാനം ലഭിച്ചത് . ഔഷധങ്ങ , നിറങ്ങ, പ്രോട്ടീനുക ,ഹോര്‍മോണുക , വൈറ്റമിനുക തുടങ്ങി പല മേഖലകളിലും ഈ കണ്ടുപിടുത്തത്തിന് സാദ്ധ്യതക ഉണ്ട്  .
                  ജീവശരീരത്തിന്‍റെയും പ്രകൃതിജന്യമരുന്നുകളുടെയും ഭക്ഷ്യ വസ്തുക്കളുടെയുമെല്ലാം അടിസ്ഥാനം കാര്‍ബ സംയുക്തങ്ങളാണ്. അതിസങ്കീര്‍ണ ഘടനയുള്ള ഇവ പരീക്ഷണശാലയി കൃത്രിമമായുത്പാദിപ്പിക്കാ എളുപ്പമല്ല. ഇത്തരം ഓര്‍ഗാനിക് സംയുക്തങ്ങളുടെ നിര്‍മാണത്തിനു വേണ്ട കാര്‍ബ ചട്ടക്കൂട് തയ്യാറാക്കുന്നതിനുള്ള വിദ്യയാണ് ഈ ശാസ്ത്രജ്ഞ ആവിഷ്‌കരിച്ചത്.
                           വന്‍കുടലിലെ അര്‍ബുദത്തെയും ഹെര്‍പ്പസ് വൈറസിനെയും ചെറുക്കുന്ന മരുന്നുക ഈ വിദ്യ ഉപയോഗിച്ച് ശാസ്ത്രജ്ഞ വികസിപ്പിച്ചു. കീടനാശിനികളും വളങ്ങളും നിര്‍മിച്ചു. കനംകുറഞ്ഞ കമ്പ്യൂട്ട മോണിറ്ററുക ഉള്‍പ്പെടെയുള്ള ഇലക്‌ട്രോണിക് സാധനങ്ങളിലുപയോഗിക്കാനുള്ള പ്ലാസ്റ്റിക്കും ഇതേ സങ്കേതത്തി തയ്യാറാക്കി.
                    പ്രകൃതിജന്യ ഓര്‍ഗാനിക് തന്മാത്രകളോടു കിടപിടിക്കുന്ന കൃത്രിമ രാസവസ്തുക്കളാണ് ഇവരുടെ സാങ്കേതികവിദ്യ ശാസ്ത്രലോകത്തിനു സമ്മാനിച്ചത്.

Monday, October 11, 2010

TWO MAIN TYPES OF BONDS

Covalent bond
Covalent bonding is a common type of bonding, in which the electronegativity difference between the bonded atoms is small or nonexistent. Bonds within most organic compounds are described as covalent. See sigma bonds and pi bonds for LCAO-description of such bonding.
A polar covalent bond is a covalent bond with a significant ionic character. This means that the electrons are closer to one of the atoms than the other, creating an imbalance of charge. They occur as a bond between two atoms with moderately different electronegativities, and give rise to dipole-dipole interactions. The electronegativity of these bonds is 0.3 - 1.7 .
A coordinate covalent bond is one where both bonding electrons are from one of the atoms involved in the bond. These bonds give rise to Lewis acids and bases. The electrons are shared roughly equally between the atoms in contrast to ionic bonding. Such bonding occurs in molecules such as the ammonium ion (NH4+) and are shown by an arrow pointing to the Lewis acid. Also known as non-polar covalent bond, the electronegativity of these bonds range < 0.3 .
Molecules which are formed primarily from non-polar covalent bonds are often immiscible in water or other polar solvents, but much more soluble in non-polar solvents such as hexane.

 Ionic bond

Ionic crystals may contain a mixture of covalent and ionic species, as for example salts of complex acids, such as sodium cyanide. Many minerals are also of this type. In such crystals, the bonds between sodium and the anions cyanide (CN-) are ionic, with no sodium associated with a particular cyanide. However, the bonds between C and N atoms in cyanide are of the covalent type, making each of the carbon and nitrogen associated with just one of its opposite type, to which it is physically closer than the other carbons or nitrogens. When such salts dissolve into water, the ionic bonds are typically broken by the interaction with water, but the covalent bonds continue to hold

CHEMICAL BOND

A chemical bond is an attraction between atoms or molecules that allows the formation of chemical compounds, which contain two or more atoms. A chemical bond is the attraction caused by the electromagnetic force between opposing charges, either between electrons and nuclei, or as the result of a dipole attraction. The strength of bonds varies considerably; there are "strong bonds" such as covalent or ionic bonds and "weak bonds" such as dipole-dipole interactions, the London dispersion force and hydrogen bonding.
Since opposite charges attract via a simple electromagnetic force, the negatively charged electrons orbiting the nucleus and the positively charged protons in the nucleus attract each other. Also, an electron positioned between two nuclei will be attracted to both of them. Thus, the most stable configuration of nuclei and electrons is one in which the electrons spend more time between nuclei, than anywhere else in space. These electrons cause the nuclei to be attracted to each other, and this attraction results in the bond. However, this assembly cannot collapse to a size dictated by the volumes of these individual particles. Due to the matter wave nature of electrons and their smaller mass, they occupy a very much larger amount of volume compared with the nuclei, and this volume occupied by the electrons keeps the atomic nuclei relatively far apart, as compared with the size of the nuclei themselves.

Friday, September 24, 2010

Periodicity of chemical properties

The main value of the periodic table is the ability to predict the chemical properties of an element based on its location on the table. It should be noted that the properties vary differently when moving vertically along the columns of the table than when moving horizontally along the rows.

Trends of groups

Modern quantum mechanical theories of atomic structure explain group trends by proposing that elements within the same group have the same electron configurations in their valence shell, which is the most important factor in accounting for their similar properties. Elements in the same group also show patterns in their atomic radius, ionization energy, and electronegativity. From top to bottom in a group, the atomic radii of the elements increase. Since there are more filled energy levels, valence electrons are found farther from the nucleus. From the top, each successive element has a lower ionization energy because it is easier to remove an electron since the atoms are less tightly bound. Similarly, a group will also see a top to bottom decrease in electronegativity due to an increasing distance between valence electrons and the nucleus.

Trends of periods

Periodic trend for ionization energy. Each period begins at a minimum for the alkali metals, and ends at a maximum for the noble gases.
Elements in the same period show trends in atomic radius, ionization energy, electron affinity, and electronegativity. Moving left to right across a period, atomic radius usually decreases. This occurs because each successive element has an added proton and electron which causes the electron to be drawn closer to the nucleus. This decrease in atomic radius also causes the ionization energy to increase when moving from left to right across a period. The more tightly bound an element is, the more energy is required to remove an electron. Similarly, electronegativity will increase in the same manner as ionization energy because of the amount of pull that is exerted on the electrons by the nucleus. Electron affinity also shows a slight trend across a period. Metals (left side of a period) generally have a lower electron affinity than nonmetals (right side of a period) with the exception of the noble gases.

Periodic Table Of Elements

The periodic table of the chemical elements (also periodic table of the elements or just the periodic table) is a tabular display of the chemical elements. Although precursors to this table exist, its invention is generally credited to Russian chemist Dmitri Mendeleev in 1869, who intended the table to illustrate recurring ("periodic") trends in the properties of the elements. The layout of the table has been refined and extended over time, as new elements have been discovered, and new theoretical models have been developed to explain chemical behavior.[1]
The periodic table is now ubiquitous within the academic discipline of chemistry, providing a useful framework to classify, systematize, and compare all of the many different forms of chemical behavior. The table has found many applications in chemistry, physics, biology, and engineering, especially chemical engineering. The current standard table contains 118 elements to date. (elements 1118)

Thursday, September 23, 2010

History of Chemistry

Chemistry is a branch of science that has been around for a long time. In fact, chemistry is known to date back to as far as the prehistoric times. Due to the amount of time chemistry takes up on the timeline, the science is split into four general chronological categories. The four categories are: prehistoric times - beginning of the Christian era (black magic), beginning of the Christian era - end of 17th century (alchemy), end of 17th century - mid 19th century (traditional chemistry) and mid 19th century - present (modern chemistry)