Covalent bonding is a common type of bonding, in which the electronegativity difference between the bonded atoms is small or nonexistent. Bonds within most organic compounds are described as covalent. See sigma bonds and pi bonds for LCAO-description of such bonding.
A polar covalent bond is a covalent bond with a significant ionic character. This means that the electrons are closer to one of the atoms than the other, creating an imbalance of charge. They occur as a bond between two atoms with moderately different electronegativities, and give rise to dipole-dipole interactions. The electronegativity of these bonds is 0.3 - 1.7 .
A coordinate covalent bond is one where both bonding electrons are from one of the atoms involved in the bond. These bonds give rise to Lewis acids and bases. The electrons are shared roughly equally between the atoms in contrast to ionic bonding. Such bonding occurs in molecules such as the ammonium ion (NH4+) and are shown by an arrow pointing to the Lewis acid. Also known as non-polar covalent bond, the electronegativity of these bonds range < 0.3 .
Molecules which are formed primarily from non-polar covalent bonds are often immiscible in water or other polar solvents, but much more soluble in non-polar solvents such as hexane.
Ionic bond
Ionic bonding is a type of electrostatic interaction between atoms which have a large electronegativity difference. There is no precise value that distinguishes ionic from covalent bonding, but a difference of electronegativity of over 1.7 is likely to be ionic, and a difference of less than 1.7 is likely to be covalent.[4] Ionic bonding leads to separate positive and negative ions. Ionic charges are commonly between −3e to +3e. Ionic bonding commonly occurs in metal salts such as sodium chloride (table salt). A typical feature of ionic bonds is that the species form into ionic crystals, in which no ion is specifically paired with any single other ion, in a specific directional bond. Rather, each species of ion is surrounded by ions of the opposite charge, and the spacing between it and each of the oppositely charged ions near it, is the same for all surrounding atoms of the same type. It is thus no longer possible to associate an ion with any specific other single ionized atom near it, as it is in covalent crystals.
Ionic crystals may contain a mixture of covalent and ionic species, as for example salts of complex acids, such as sodium cyanide. Many minerals are also of this type. In such crystals, the bonds between sodium and the anions cyanide (CN-) are ionic, with no sodium associated with a particular cyanide. However, the bonds between C and N atoms in cyanide are of the covalent type, making each of the carbon and nitrogen associated with just one of its opposite type, to which it is physically closer than the other carbons or nitrogens. When such salts dissolve into water, the ionic bonds are typically broken by the interaction with water, but the covalent bonds continue to hold
0 comments:
Post a Comment