Thursday, November 25, 2010

Nitrogen Fixation

Nitrogen fixation is the natural process, either biological or abiotic, by which nitrogen (N2) in the atmosphere is converted into ammonia.[1] This process is essential for life because fixed nitrogen is required to biosynthesize the basic building blocks of life, e.g. nucleotides for DNA and RNA and amino acids for proteins. Formally, nitrogen fixation also refers to other abiological conversions of nitrogen, such as its conversion to nitrogen dioxide.
Nitrogen fixation is utilized by numerous prokaryotes, including bacteria, actinobacteria, and certain types of anaerobic bacteria. Microorganisms that fix nitrogen are called diazotrophs. Some higher plants, and some animals (termites), have formed associations (symbioses) with diazotrophs. Nitrogen fixation also occurs as a result of non-biological processes. These include lightning, industrially through the Haber-Bosch Process, and combustion.Biological nitrogen fixation was discovered by the Dutch microbiologist Martinus Beijerinck.

Biological nitrogen fixation

Schematic representation of the nitrogen cycle. Abiotic nitrogen fixation has been omitted.
Biological nitrogen fixation (BNF) occurs when atmospheric nitrogen is converted to ammonia by an enzyme called nitrogenase. The formula for BNF is:
N2 + 6 H+ + 6 e → 2 NH3
The process is coupled to the hydrolysis of 16 equivalents of ATP and is accompanied by the co-formation of one molecule of H2. In free-living diazotrophs, the nitrogenase-generated ammonium is assimilated into glutamate through the glutamine synthetase/glutamate synthase pathway.
Enzymes responsible for nitrogenase action are very susceptible to destruction by oxygen. (In fact, many bacteria cease production of the enzyme in the presence of oxygen). Many nitrogen-fixing organisms exist only in anaerobic conditions, respiring to draw down oxygen levels, or binding the oxygen with a protein such as Leghemoglobin.
Plants that contribute to nitrogen fixation include the legume family – Fabaceae – with taxa such as clover, soybeans, alfalfa, lupines, peanuts, and rooibos. They contain symbiotic bacteria called Rhizobia within nodules in their root systems, producing nitrogen compounds that help the plant to grow and compete with other plants. When the plant dies, the fixed nitrogen is released, making it available to other plants and this helps to fertilize the soil[1][3] The great majority of legumes have this association, but a few genera (e.g., Styphnolobium) do not. In many traditional and organic farming practices, fields are rotated through various types of crops, which usually includes one consisting mainly or entirely of clover or buckwheat (family Polygonaceae), which were often referred to as "green manure."

Non-leguminous nitrogen-fixing plants



A sectioned alder tree root nodule.



A whole alder tree root nodule.
Although by far the majority of nitrogen-fixing plants are in the legume family Fabaceae, there are a few non-leguminous plants, such as alder, that can also fix nitrogen. These plants, referred to as "actinorhizal plants", consist of 24genera of woody shrubs or trees distributed among in 8 plant families. The ability to fix nitrogen is not universally present in these families. For instance, of 122 genera in the Rosaceae, only 4 genera are capable of fixing nitrogen. All these families belong to the orders Cucurbitales, Fagales and Rosales, which together with the Fabales form a clade of eurosids. In this clade, Fabales were the first lineage to branch off; thus, the ability to fix nitrogen may be plesiomorphic and subsequently lost in most descendants of the original nitrogen-fixing plant; alternatively, it may be that the basic genetic and physiological requirements were present in an incipient state in the last common ancestors of all these plants, but only evolved to full function in some of them:

Chemical nitrogen fixation

Nitrogen can also be artificially fixed for use in fertilizers, explosives, or in other products. The most common method is the Haber process. Artificial fertilizer production is now the largest source of human-produced fixed nitrogen in the Earth's ecosystem.
The Haber process requires high pressures (around 200 atm) and high temperatures (at least 400 °C), routine conditions for industrial catalysis. This highly efficient process uses natural gas as a hydrogen source and air as a nitrogen source.

0 comments:

Post a Comment